What I do

I am a pure mathematician who explores quantum hypertopologies and their applications to mathematical physics.


mathematics, Physics, functional analysis, Geometry of metric spaces, C*-algebras, Noncommutative geometry, Statistics, Probability theory, computer science, economics.

Professional Biography

I am a full professor of Mathematics. My primary contribution to mathematics is the development of the theory of quantum hypertopologies over quantum metric spaces. The objective of my research is to find new methods for the study of quantum gravity using noncommutative metric geometry.

I received most of my education in France, where I was awarded the title of Statisticien-Economiste from the Ecole Nationale de l'Administration Economique (now, statistical engineer), and a Maitrise in pure mathematics from the Université Pierre et Marie Curie (Paris 6). I then obtained a M.A. in statistics and a PhD in mathematics at U.C. Berkeley under Dr. M. A. Rieffel.

I was a postdoctoral fellow at the University of Toronto, and became a tenure-track assistant professor in mathematics at the University of Denver in 2007. I obtained tenure in 2012 and I became full professor in 2016.


  • Ph.D., Mathematics, University of California, Berkeley, 2004
  • Candidate in Philosophy, Mathematics, University of California, Berkeley, 2001
  • MA, Mathematical Statistics, University of California, Berkeley, 1999
  • MS, Mathematical Economics and Statistics, Ecole Nationale de la Statistique et de l'Administration Economique, 1998
  • MS, Mathematics, Universite Pierre et Marie Curie - Paris 6, 1997
  • BS, Mathematics, Universite Pierre et Marie Curie - Paris 6, 1996
  • Mathematiques Superieures et Speciales, Mathematics and Physics, Classes Preparatoires Scientifiques, Pasteur, 1995


Our research aims at providing a new analytical framework based on metric geometry for the study of certain
noncommutative analogues of Lipschitz algebras, motivated by approximations problems from mathematical physics, and by the exploration of the metric aspects of noncommutative geometry. To this end, we have developed an analogue of the Gromov-Hausdorff distance between quantum compact metric spaces, applied it to obtain various new continuity and approximation results for quantum metric spaces, discovered analogues of important results in metric geometry such as Gromov compactness theorem, showed new applications of our metric to group actions and approximations of symmetries in noncommutative geometry, and open a new area of inquiry by proposing a new metric on Hilbert modules, appropriately augmented with metric data, and on spectral triples. These later developments are new even in the classical setting, and show the potential of the interaction between functional analysis and metric geometry at the core of our work.

The motivations for our research area are rooted in problems in mathematical physics, and include:
* the constructions of finite-dimensional approximations of quantum models,
* furthering our understanding of the metric aspects of noncommutative geometry,
* discovering new methods for the study of C*-algebras inspired by metric geometry.

At its core, our research continues to bring the profound ideas of analysis to new realms: in our case, by creating a geometric space out of collections of C*-algebras which may describe quantum space-time.

Areas of Research

Functional analysis
Geometry of metric spaces
Noncommutative geometry.

Key Projects

  • Collaborative Research: GPOTS Special Meetings 2009/2010
  • West Coast Operator Algebra 2014

Featured Publications

Latremoliere, F. (2013). Quantum Locally Compact Metric Spaces. Journal of Functional Analysis, 264(1), 362-402.
Latremoliere, F. (2015). The Dual Gromov-Hausdorff Propinquity. Journal de Mathematiques Pures et Appliquees, 103(2), 303--351.
Latremoliere, F. (2015). Convergence of Fuzzy Tori and Quantum Tori for the quantum Gromov-Hausdorff Propinquity: an explicit approach . Munster Journal of Mathematics, 8(1), 57--98.


Latremoliere, F. (2018). The spectral propinquity. Operator Algebra Seminar. Tokyo: Tokyo University.
Latremoliere, F. (2018). The Gromov-Hausdorff Propinquity. Operator Algebra Seminar. Kyoto University: Kyoto University.
Latremoliere, F. (2018). The . New Geometry of Quantum Dynamics. Warsaw: Polish Science Academy.
Latremoliere, F. (2014). The Quantum Propinquity. East Coast Operator Algebra Seminar. Toronto, ON: Fields Institute, University of Toronto and York University.
Latremoliere, F. (2016). A Gromov-Hausdorff Distance for Hilbert Modules. Noncommutative Geometry Seminar. California: Caltech.


  • Ulam Professorship, University of Colorado, Boulder